增材制造有广阔的发展前景,但也存在巨大的挑战。目前最大的难题是材料的物理与化学性能制约了其实现技术。如:在成形材料上,目前主要是有机高分子材料和金属材料。金属材料直接成形是近十多年的研究热点,正逐渐向工业应用,难点在于如何提高精度。新的研究方向是用增材制造技术直接把软组织材料(生物基质材料和细胞)堆积起来,形成类生命体,经过体外培养和体内培养去制造复杂组织器官。关键技术的研发将有力地推动增材技术的发展。
1.精度控制技术:
增材制造的精度取决于材料增加的层厚和增材单元的尺寸和精度控制。增材制造与切削制造的最大不同是材料需要一个逐层累加的系统,因此再涂层(recoating)是材料累加的必要工序,再涂层的厚度直接决定了零件在累加方向的精度和表面粗糙度,增材单元的控制直接决定了制件的最小特征制造能力和制件精度。现有的增材制造方法中,多采用激光束或电子束在材料上逐点形成增材单元进行材料累加制造,如:金属直接成形中,激光熔化的微小熔池的尺寸和外界气氛控制,直接影响制造精度和制件性能。激光光斑在0.1~0.2mm,激光作用于金属粉末,金属粉末熔化形成的熔池对成形精度有着重要影响。通过激光或电子束光斑直径、成形工艺(扫描速度、能量密度)、材料性能的协调,有效控制增材单元尺寸是提高制件精度的关键技术。
随着激光、电子束及光投影技术的发展,未来将发展两个关键技术:一是金属直接制造中控制激光光斑更细小,逐点扫描方式使增材单元能达到微纳米级,提高制件精度;另一个方向是光固化成形技术的平面投影技术,投影控制单元随着液晶技术的发展,分辨率逐步提高,增材单元更小,可实现高精度和高效率制造。发展目标是实现增材层厚和增材单元尺寸减小10~100倍,从现有的0.1mm级向0.01~0.001mm发展,制造精度达到微纳米级。
2.高效制造技术:
增材制造在向大尺寸构件制造方向发展,如金属激光直接制造飞机上的钛合金框粱结构件,框粱结构件长度可达6m,目前制作时间过长,如何实现多激光束同步制造、提高制造效率、保证同步增材组织之间的一致性和制造结合区域质量是发展的关键技术。此外,为提高效率,增材制造与传统切削制造结合,发展增材制造与材料去除制造的复合制造技术是提高制造效率的关键技术。 为实现大尺寸零件的高效制造,发展增材制造多加工单元的集成技术。如:对于大尺寸金属零件,采用多激光束(4~6个激光源)同步加工,提高制造效率,成形效率提高10倍。对于大尺寸零件,研究增材制造与切削制造结合的复合关键技术,发挥各工艺方法的其优势,提高制造效率。发展目标是:增材制造零件尺寸达到20m,制件效率提高10倍。形成增材制造与传统切削加工结合,使复杂金属零件的高效高精度制造技术在工业生产上得到广泛应用。
3.复合材料零件增材制造技术
现阶段增材制造主要是制造单一材料的零件,如单一高分子材料和单一金属材料,目前正在向单一陶瓷材料发展。随着零件性能要求的提高,复合材料或梯度材料零件成为迫切需要发展的产品。如:人工关节未来需要Ti合金和CoCrMo合金的复合,既要保证人工关节具有良好的耐磨界面(CoCrMo合金保证),又要与骨组织有良好的生物相容界面(Ti合金),这就需要制造的人工关节具有复合材料结构。由于增材制造具有微量单元的堆积过程,每个堆积单元可通过不断变化材料实现一个零件中不同材料的复合,实现控形和控性的制造。
未来将发展多材料的增材制造,多材料组织之间在成形过程中的同步性是关键技术。如:不同材料如何控制相近的温度范围进行物理或化学转变,如何控制增材单元的尺寸和增材层的厚度。这种材料的复合,包括金属与陶瓷的复合、多种金属的复合、细胞与生物材料的复合,为实现宏观结构与微观组织一体化制造提供新的技术。发展目标是:实现不同材料在微小制造单元的复合,达到陶瓷与金属成份的主动控制,实现生命体单元的受控成形与微结构制造,从结构自由成形向结构与性能可控成形方向发展。